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Abstract

We develop a model of friendship formation that sheds light on segregation patterns

observed in social and economic networks. Individuals come in di¤erent types and

have type-dependent bene�ts from friendships; we examine the properties of a steady-

state equilibrium of a matching process of friendship formation. We use the model to

understand three empirical patterns of friendship formation: (i) larger groups tend to

form more same-type ties and fewer other-type ties than small groups, (ii) larger groups

form more ties per capita, and (iii) all groups are biased towards same-type relative to

demographics, with the most extreme bias coming from middle-sized groups. We trace

each of these empirical observations to speci�c properties of the theoretical model and

highlight the role of choice and chance in generating homophilous behavior. Finally we

discuss welfare implications of the model.
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1 Introduction

The network structure of social interactions in�uences a variety of behaviors and economic

outcomes, including the formation of opinions, decisions of which products to buy, investment

in education, access to jobs, and social mobility, just to name a few. In particular, the extent

to which a society is segregated across di¤erent groups can be critical in determining things

like how quickly information di¤uses, and the extent to which there is under-investment in

human capital, among other things. In this paper we examine a fundamental and pervasive

phenomenon of social networks which is known as �homophily�.1 This refers to a tendency

of various types of individuals to associate with others who are similar to themselves. Ho-

mophily is a term coined by Lazarsfeld and Merton (1954) and it applies very broadly, as

measured by age, race, gender, religion, profession and is generally a quite strong and robust

observation (see McPherson, Smith-Lovin and Cook (2001) for an overview of research on

homophily). Extensive empirical research shows strong evidence of homophily , regardless of

along which dimensions types are measured. Given the importance of interaction patterns,

developing models that help us to understand homophily is essential.

In this paper we begin by examining some detailed observations about patterns of ho-

mophily. Some background comes from an extensive empirical literature in sociology. Beyond

that background, we identify three speci�c patterns of homophily relative to the �Adolescent

Health�data set (described in detail below), which examines friendship patterns in a repre-

sentative sample of U.S. high schools.2 We then build a model of friendship formation and

show that the model can generate the observed patterns of homophily, and in particular, we

trace di¤erent aspects of observed homophily to di¤erent aspects of the model.

The three main observations that we point out from the data are summarized as follows

(and see below for details). Consider a high school and the patterns of friendship within

it. In particular, let the type of an individual be their race and let us de�ne an index

of homophily to be applied to a given race within a given high school. We keep track of

the percentage of each individual�s friendships that are with other individuals of the same

race. Then, averaging this fraction across all individuals of a given race provides a measure

of how �homophilous� that given race within that given high school is. If race was not a

1The etymology of the term is simple: homo = self and philìa = love.
2Add Health is a program project designed by J. Richard Udry, Peter S. Bearman, and Kathleen Mullan

Harris, and funded by a grant P01-HD31921 from the National Institute of Child Health and Human De-

velopment, with cooperative funding from 17 other agencies. Persons interested in obtaining data �les from

Add Health should contact Add Health, Carolina Population Center, 123 W. Franklin Street, Chapel Hill,

NC 27516-2524 (addhealth@unc.edu).
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factor in the formation of friendships, then cross-race friendships would occur roughly in

proportion to the relative preponderance of the races. For instance, in a school that is two

thirds of one race and one third of another, if race was not a factor then the more populous

race should have roughly two thirds of its friendships with same race, and so its homophily

index should be roughly two thirds. A measured homophily index signi�cantly di¤erent

from two thirds provides evidence that race somehow (possibly indirectly) matters in the

formation of friendships. The �rst main empirical observation is a very basic one that has

been documented before, which we refer to as relative homophily: larger groups (measured

as a fraction of the population of their respective schools) exhibit higher homophily indices.

One would expect this even if race does not matter at all in the formation of friendships. In

particular, larger groups form on average more friendships with their own group than smaller

groups, and on average form fewer friendships with other groups. The second main empirical

observation that we document is that larger groups form signi�cantly more friendships per

capita. More speci�cally, we see that members of a group that comprise a small minority

in a school form roughly 5 friendships per capita, while members of groups that comprise

large majorities (close to one hundred percent of a school) form on average more than 8

friendships. This pattern is something that we argue must be attributed to race mattering,

and in particular we will argue that it traces back to races entering through preferences. The

third main empirical observation that we document is that groups tend to have homophily

indices that are at least as large as their respective fraction of the population. That is,

groups tend to be �inbred�(a term from the literature on homophily) in friendship patterns.

Here the new observation is that this inbreeding is essentially absent for groups that form

very small or very large fractions of their school, but the inbreeding is very large for groups

that form a middle-ranged fraction of their school.

With these three observations in hand, we develop a model of friendship formation. In

the model, individuals come into a society and form friendships when they enter. Friends

are met through a process of random search, and each search entails a �xed cost. The

longer an individual spends in the matching process, the more friendships are formed. So,

an individual�s decision problem is how many friendships to form, or equivalently, how long

to spend in the matching process. There are diminishing returns to forming friendships, and

so eventually an individual will exit the process. We study a steady-state equilibrium of

this process, where there are in�ows and out�ows of agents, and these balance. The critical

determinant of an individual�s strategy, and thus how long agents of di¤erent types stay in

the matching process, is his or her preferences and the mix of types that he or she faces.

We examine preferences such that an individual could potentially care about the number of
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same-type friends that he or she has, as well as the number of di¤erent-type friends that

he or she has. Once preferences are speci�ed, we have a well-de�ned system and we show

that a steady-state equilibrium always exists and we study its properties. Most importantly,

the strategies of the agents, as well as the makeup of the in�owing populations, determine

what the matching process looks like. For example, if one group forms 2/3 of the in�owing

population, but stays in the matching twice as long as each of the other groups, then they will

form 4/5 of the stock in the matching process, rather than 2/3. This comes from examining

how many people will be in the matching process at a typical date: two generations of the

larger group for every one set of the smaller group, and so the overall proportion of the larger

group is 2�2=3
2�2=3+1�1=3 . Thus, strategies a¤ect the matching process, which feeds back to a¤ect

strategies, and we close this by examining a steady-state equilibrium.

A rough summary of the implications of the model are as follows. The relative homophily

observations, that larger groups have a higher absolute homophily, are implied by equilib-

rium conditions and diminishing returns to friendships, without any further conditions. The

requirement that friendships add up across groups implies that larger groups must have

smaller number of di¤erent-group friendships per capita. Diminishing returns then imply

that the smaller group could not be forming more same-type friendships, or it would have

more friendships of both types which implies a lower marginal return from spending time in

the matching, which could not be consistent with both types following optimal strategies.

So, larger groups form more same-type friendships and fewer di¤erent-type friendships than

smaller groups, which then implies that larger groups have higher homophily indices, as ob-

served in the data. While equilibrium implies relative homophily, it does not imply anything

about overall numbers of friends or about inbreeding homophily. We then trace the overall

number of friendships formed to preference conditions. If agents have a bias in their prefer-

ences, so that they receive higher marginal returns when forming a mix of friendships that

is biased towards same-type, then groups that face a matching with more of their same-type

will form more total friendships. This e¤ect then feeds back, so that the larger group stays

in the matching longer, and so the stocks of agents are further biased towards larger groups.

This results in inbreeding homophily, where the larger groups end up forming a percentage

of same-type friendships that is larger than their relative presence in the overall population.

While the preference bias ends up being consistent with the observation of larger groups

forming more friendships per capita, and generates inbreeding homophily for the largest

group, the overall patterns of homophily generated across groups do not match the observa-

tions. Finally, by considering variations on the matching process itself, inbreeding homophily

patterns across the population that match the observed patterns (where middle-sized groups
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are the most inbred), are found by allowing groups to match so that they meet same-types at

a higher rate than in terms of relative stocks. This has di¤erential e¤ects across population

sizes.

We conclude the analysis with an examination of welfare issues. While the model is

too stark to take seriously for policy implications, the welfare analysis points out that av-

erage welfare depends in sensitive ways to the structure of preferences and matching. This

suggests that it is vital to build richer models of friendship formation in order to better un-

derstand homophily and self-segregation within schools and to develop well-founded policies

in response.

Choice and Chance in Network Formation

Regarding contributions to the literature, to our knowledge, this is the �rst model of its kind,

explicitly modeling friendship formation when homophily is a potential issue. Researchers

are well aware that homophily patterns will be governed by both the meeting process and

preferences. For example, Moody (2001, page 680) notes that: �friendship segregation results

from the multilevel in�uences of mixing opportunity and individual preference�. However,

our model seems to be the �rst systematic investigation of the di¤erent roles of choice

and chance in determining the emerging patterns of social ties.3 In terms of the speci�c

observations that we examine, the contributions are as follows. The observation regarding

relative homophily, and pointing out that this essentially follows having friendships balance

across types, is something that has roots in what is known as �contact theory.�For example,

Blau (1977) points out that since each cross-group friendship must involve a member from

each group, then smaller groups must have more cross-group friendships on a per capita

basis. Overall relative homophily, however, is not implied by this alone, and also requires

that preferences have diminishing returns. The second observation that larger groups form

more relationships is an empirical �nding that has been noted before, and for instance

by Marsden (1987) in a study of advice networks. The �nding that this is implied by a

particular bias in preferences (and will not hold in the absence of such a bias) is new. The

third observation that inbreeding has a speci�c pattern, and is maximal for middle-sized

groups also appears to be new, as does the explanation that this must be tied back to

the technology of matching. Moody (2001) suggests that when two groups are close to a

majority their tendency to inbreed increases, but because of competing groups concerned

3In fact, even more generally, most models of network formation fall either into a class of random graph

models governed by chance, or a game theoretic model governed by choice. See Jackson (2006) for some

discussion and background.
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about sociological factors, which are absent from our preference-based model. Finally, the

welfare analysis that accompanies the model is new as well.

We begin the paper with some brief introductory background on homophily before pre-

senting the homophily indices, observations on the Add Health data, the model, and the

analysis.

2 Homophily: Some Background and De�nitions

2.1 Empirical Background

Homophily has been noted throughout history, and is seen in such adages as �birds of a

feather, �ock together.�which dates to at least the �fteenth century.4 For example, based

on a national survey Marsden (1987, 1988) �nds that only 8 percent of people have any people

of another race with whom they �discuss important matters.�More generally, this tendency

of similar agents to tie together has been documented by a large sociological literature that

has examined many dimensions of diversity.

Explanations for homophily have referred to the di¤erent opportunities faced by the

member of a referral group to tie with other members of the same group or with members of

other groups, as well as to preferences. In his in�uential paper, Blau (1977) pointed to the

role of relative group sizes in determining the opportunities of members of various groups

to tie together. Looking at the simple case of two groups, Blau observes that, due to the

reciprocal nature of ties, cross-type ties will have a larger weight on the smaller group than

on the larger group. This leads to a basic form of homophily where larger groups have fewer

di¤erent-type friendships relative to their size, so that if all agents form the same number of

friendships overall, larger groups would have higher homophily than smaller groups.

As an example, Table 1 summarizes information about friendship links by ethnicity of

students in a Dutch high school collected by Baerveldt, Van Duijn, Vermeij and Van Hemert

(2004).

Table 1 records the percentage of friendships by race. The table should be read as follows:

the cell ij indicates the percentage of j�s friendships that are directed towards race i. Each

column therefore sums to 100 percent. If friendships where formed purely at random (as

in Blau�s analysis), the demographics would lead each group i to receive a share of other

4Lazarsfeld and Merton (1954) attribute this to Robert Burton in 1621, but a version of it appears in

Philemon Holland�s (1601) translation of �Livy�s Roman history,� and seems to come from folklore before

that.
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Ethnicity of Students

Percent of Friends Dutch Moroccan Turkish Surinamese Others

by Ethnicity: n=850 n=62 n= 75 n=100 n=230

%=64 %=5 %=6 %=8 %=17

Dutch 79 24 11 21 47

Moroccan 2 27 8 4 5

Turkish 2 19 59 8 6

Surinamese 3 8 8 44 12

Others 13 22 14 23 30

Table 1: Percentage of Links Across Ethnicities in a Dutch High School; from Baerveldt et

al (2004).

groups�friendships which equals i�s relative size in population. So we would observe a �rst

row of all 64%, a second of all 5%, and so forth. In fact what we see goes beyond this pure

e¤ect of demographics: the percentages on the diagonals exceed the relative fractions of the

population, and hint a self-bias of groups in the process of friends formation.5 Moreover,

this tendency to link to own type beyond the e¤ect of demographics is not uniform across

groups, and may even o¤set the e¤ect of demographics on the outwardness of groups. In the

case of Table 1, Turkish (a minority group) show a stronger tendency towards intra-group

relationships than Dutch (the majority group), after correcting for the e¤ect of opportunity

of cross ties (see Baerveldt et al (2004)).

An extensive literature has documented linking tendencies and their relation with other

aspects of groups�con�guration. For example, there is some evidence that the percentage

of inter-group links can vary nonlinearly and non monotonically with overall measures of

heterogeneity in the population (e.g., see Blalock (1967) and Moody (2001)). There have

been various theories proposed for this, for instance based on contact theory (e.g., Allport

(1954), Blau (1977)), or on power di¤erences and competition (e.g., Giles and Evans (1986)).

In Section 3 we present in some detail the main patterns of homophily that come out of

the high school friendships data from the National Longitudinal Study of Adolescent Health.

Before that, we de�ne some indexes of homophily.

5The �others�category is an exception, but it is a conglomerate of a number of ethnicities.
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2.2 De�ning Homophily

We propose de�nitions of homophily that allow for multiple groups and for varying total

numbers of ties.

Let Ni denote the number of type i individuals in the population, and let wi = Ni
N
be the

relative fraction of type i in the population, where N =
P

kNk. Let N�i =
P

k 6=iNk denote

the total population of types other than i.

Let si denote the average number of friendships that agents of type i have with agents

who are of the same type, and let di be the average number of friendships that type i agents

form with agents of types di¤erent than i.

The �rst index is the obvious one which is a basic homophily index Hi, measuring the

average fraction of the ties of individuals of a given type that are with that same type.

Definition 1 The homophily index Hi is given by

Hi =
si

si + di
:

The index Hi measures the relative frequencies of same-type versus di¤erent-type friend-

ships. As observed by Blau (1977), this ratio will partly be determined by opportunities,

re�ecting the relative sizes of groups�populations. This aspect of homophily is captured by

the following de�nition.

Definition 2 The pro�le of friendships (s; d) = (s1; d1; s2; d2; :::; sK ; dK) satis�es baseline
homophily if for all i:

Hi = wi:

If there are two groups, then Blau�s observation that cross-type friendships require one

from each type implies that N1d1 = N2d2, so that N1 > N2 implies d1 < d2. In other

words, larger groups must have fewer ties with other types per capita, based solely on simple

accounting. If in addition s1 > s2 , so that larger groups have more same-type friendships

per capita, then we have a pattern that we call relative homophily.

Definition 3 A pro�le (s; d) = (s1; d1; s2; d2; :::; sK ; dK) satis�es relative homophily if
Ni > Nj implies si > sj and di < dj, and then Hi > Hj.

Relative homophily is satis�ed in the case of baseline homophily where all friendships are

formed in relative population proportions.
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However, beyond relative homophily, friendships can be biased with respect to baseline

homophily, as we shall see in the data to follow. This suggests that raw demographics are not

the only source of homophily. The observed tendency of friendships to be biased towards own

types beyond the e¤ect of relative population sizes has been referred to in the sociological

literature as �inbreeding homophily�(see e.g. Coleman (1958), Marsden (1987), McPherson

et al (2001)).

Definition 4 The pro�le (s; d) satis�es inbreeding homophily for type i if:

Hi > wi:

Clearly, inbreeding homophily could be due to aspects of choice, but might also be due to

opportunities that are not re�ected in the relative sizes of groups, and that may stem from

internal characteristics of the organization in which ties are formed (e.g., tracking, classes

and extracurricular activities in schools).

One can also have the reverse condition where friendships are biased towards having

cross-type friendships.

Definition 5 The pro�le (s; d) satis�es heterophily for type i if:

Hi < wi:

Generally, there is a di¢ culty in simply measuring homophily according to Hi. For

example, consider a group that is 95 percent of the population. Suppose that its same-type

friendships are 99 percent of its friendships. Compare this to a group that forms 50 percent

of a population and has 54 percent of its friendships being same-type. Although both have

a bias of an extra 4 percent of friendships relative to its size in the population, the �rst

group is more biased in terms of what fraction of those ties are same-type relative to the

makeup of ties that it could have formed. In order to take care of this, use the following

index developed by Currarini, Jackson and Pin (2007) which normalizes the homophily index

by the potential extent to which a group could be biased.6

Definition 6 The inbreeding homophily of type i is

IHi =
si

si+di
� wi

1� wi
=
Hi � wi
1� wi

:

6As will be clear from the data, this also corrects an issue that the raw homophily index is heteroschedastic

when viewed relative to group fraction wi, while this normalized index has a more constant variance as a

function of wi.
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This index measure the amount of bias with respect to baseline homophily as it relates

to the maximum possible bias (the term 1 � wi). It can be easily checked that we have
inbreeding homophily for type i if and only if IHi > 0, and inbreeding heterophily for type i

if and only if IHi < 0. The index IHi measures the amount of bias with respect to baseline

homophily divided by the maximum potential bias available to type i. In fact, pure baseline

homophily would imply that si
si+di

= wi, while the upper bound for the term si
si+di

is 1, from

which the denominator of the expression for IHi. Thus, the measure of inbreeding homophily

is 0 if there is pure baseline homophily, and 1 if a group completely inbreeds.7 Measuring

inbreeding homophily as a share of the maximum potential homophily adjusts for group size

to keep track of the amount of inbreeding homophily that a group could potentially display.

3 Details on the Structure of Friendships and Homophily

Table 2 presents friendships in an American High School, from the Add Health data set.8

Table 2 reads as Table 1. The numbers on the main diagonal record the friendships that

are of same-type. These values are substantially higher than the relative group�s size for

the two larger groups, and lower for the smallest group (Hispanics), re�ecting inbreeding

homophily for both whites and blacks, and some heterophily for Hispanics. The IH index of

inbreeding homophily is 0:69 for whites (whose relative population is 51%), 0:76 for blacks

(relative population 38%) and �0:11 for Hispanics (2% of population). This non-monotonic
trend of the IH index will be discussed in detail in Sections 6 and 7 of this paper.

The network of friendships by race in this high school is pictured in Figure 1.

7One could also de�ne a heterophily index, which would be
si

si+di
�wi

�wi , re�ecting the extent to which a

group is outgoing. It would be 0 at baseline homophily and 1 if a group only formed di¤erent-type friendships.
8The data from National Longitudinal Survey of Adolescent Health (commonly referred to as �Add

Health�) were collected over several years starting in 1994 over a carefully selected sample of high schools

and middle schools. There are 112 schools in the data set with behavioral and demographic data, and here

the data are from 84 schools for which extensive network information was obtained. The data are based on

student interviews. The friendship data were based on reports of friendships by each student. Students were

shown a list of all the other students in the school and permitted to name up to �ve friends of each sex.

Only 3 percent nominated ten friends, and only 24 percent hit the constraint on one of the sexes, and so the

constraints do not seem to be a substantial measurement issue (see Moody (2001) for more discussion). The

data include information about how much interaction there is between individuals, which we do not make

use of as it does not add much to our analysis. Here a tie is present if either student mentioned the other as

a friend. Students could also identify other students with whom they had sentimental relations, which are

not reported among friendships. The attribution of race is based on the self-reported classi�cation.
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Ethnicity of Students

Percent of Friends White Black Hispanic Others

by Ethnicity: n=131 n=96 n= 13 n=15

%=51 %=38 %=5 %=6

White 85 7 47 74

Black 4 85 46 11

Hispanic 4 6 2 4

Others 7 2 5 11

Table 2: Percentage of Links Across Ethnicities in an American School; from Add Health

1994 Data.

Figure 1 shows the stark tendency of white and black students to form distinct commu-

nities (high levels of inbreeding homophily), and the di¤erent behavior of Hispanic students

(less numerous), who integrate more with other races and fail to form an independent com-

munity.

We now turn to examining the three observations mentioned in the introduction. These

observations are from Currarini, Jackson and Pin (2007), where we provide additional detail

in the analysis including relating homophily to other observables.

3.1 Relative Homophily

In each of the 84 high schools there are 4 di¤erent racial characterizations, leading to 336

potential observations. There are 31 cases where there are no students of a given race, and

so we have 305 total observations. Each observation is then a race within a particular school.

Figure 2 shows how relative homophily is pervasive in the Add Health schools. Each dot

represents si (left part) and di (right part) of a particular racial group i in one of the 84

Add Health high schools. In the x-axis we have the percentage wi of a group i in its school.

The plots show the increase in the average number si of same type friends (left frame) and

decrease the average number di of di¤erent-type friends (right frame), as wi varies from 0 to

100%.9

If si increases and di decreases in wi, then si
si+di

necessarily increases in wi. Figure 3

illustrates the observed distribution of the homophily index Hi = si
si+di

as a function of wi.

The 45 degree line provides the baseline homophily benchmark.

9The slopes are 7.6 with a t of 32, and a slope of -5.7 with a t of -15.6, respectively.
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Figure 1: Friendships network in a U.S. School. Colors identify races: Yellow=Whites;

Blue=Blacks; Red=Hispanic.

Beyond the clear positive tendency of increasing homophily with group size (as a fraction

of population),10 we also note that the baseline homophily line acts as a lower envelop of

the observed dots, which is evidence of pervasive inbreeding homophily that we examine in

more detail in Section 3.3.11

3.2 Group Size and the Total Number of Friends

The observed inbreeding homophily could be coming from a variety of sources. Various

groups may end up spending more time with their own types just as a result of a segregated

organization within the school, or because of opportunities that di¤er from those that are de-

scribed by a purely random process of friendship formation on the overall school population.

Academic tracking is one example where correlation may be present, inducing segregation

even within an heterogeneous school (see Feld, 1981). We may therefore end up observing

a fair amount of inbreeding homophily even without any preference or choice�based reason

for it.
10The slope of a regression is .98 with a t-statistic of 31. We �t a nonlinear curve below.
11Figure 3 is very similar to Figure 6 in Echenique and Fryer (2007) who are interested in de�ning segre-

gation measures and who develop a measure based on the spectral decomposition of the friendship matrix

and test it on the same data. Thus, the same pattern exists for other measures as well.
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Figure 2: Relative homophily. si (left) and di (right), varying the percentage wi of a group

in the school.

We now present a critical observation that provides evidence that preferences do play an

important role in the racial mix of friendships. This is something that we also investigate

in detail with respect to the model. This concerns observations relating groups�sizes to the

total number of friendships. This relation cannot be generated solely by the pure e¤ect of

opportunities, as without any preference bias. One would have to tell a story explaining why

opportunities are more numerous as a function of group size, when group size does not have

any preference component (and independent of race).

In Figure 4, there is a clear positive relation between the size of racial groups and the

total number of per capita friends that they form. Together with a pervasive presence of

inbreeding homophily, this positive relation seems to be a signi�cant result from the Add

Health survey data. It is notable that this aspect of friendship formation was neglected in

Blau�s (1977) analysis of opportunity driven homophily, and has not been accounted for as

a possible source of di¤erences in the observed behavior of di¤erence racial groups.12,13

12Marsden (1987) observes a similar pattern in his empirical study of the �discussion network� based

on a national U.S. survey, but does not discuss a connection between such a pattern and other aspects of

friendship formation.
13The coe¢ cient of the regressed line is 3.3, with a t-statistic of 7.1, and the intercept is 5.0 with a

t-statistic of 29.
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Figure 3: The homophily index.

3.3 Inbreeding Homophily

As mentioned above, another feature of the data is that there is inbreeding homophily for

most groups. Moreover, there is a signi�cant and distinctive pattern to IHi as a function

of relative group size. Figure 5 illustrates inbreeding homophily as a function of group size

(and also as a function of race).14

Figure 5 indicates two clear patterns. First, there is inbreeding homophily for most

groups, with some exception for the smallest groups. Second, there is a clear bell shaped

curve where the measure is close to 0 at the extremes and very high (reaching almost 80

percent) near the middle.

4 A Search-BasedModel of Links among Diverse Types

We now examine a search/matching-based model of friendhisp formation. Such search/matching

models have been used in a variety of contexts (e.g., labor markets as in Mortensen and Pis-

sarides (1994)). The model introduced here is distinct in that agents form many friendships.

14In a regression of IHi versus wi and w2i , we �nd a coe¢ cient of 2.2 on wi and a coe¢ cient of �2:3
on w2i , with t-statistics of 17 and -16, respectively. The intercept term is .1 and insigni�cant. Running a

regression of the inbreeding homophily index on the variable wi(1 � wi) and forcing a zero intercept, we
obtain a coe¢ cient of 2 (standard error 0.07), with a t-value of 27. In Currarini, Jackson and Pin (2007) we

analyze these data in more detail.
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Figure 4: Larger groups make more friends

4.1 Agents, Types and Payo¤s

Agents come in a �nite variety of types T = f1; : : : ; Kg. These might correspond to ethnic-
ities, religious a¢ liations, professions, age, etc., or some combinations of traits.

The utility of an agent depends on the numbers of his or her friends15 who are of his

or her same type and who are of di¤erent types. For the purposes of this model, the agent

only distinguishes between �same�and �di¤erent,�and does not distinguish in any �ner way

among di¤erences. This is consistent with empirical evidence. For example Marsden (1988)

does not �nd any signi�cant distinction between friendships and races after accounting for

homophily. As McPherson et al (2001) point out, the �key distinction appears to be same�

di¤erent�.

The total utility to an agent i who has si same-type friends and di di¤erent-type friends

is U(si; di).

Note that the function U is not indexed by the type of the agent. Thus agents�base

preferences are the same, but their resulting outcomes may di¤er depending on the society

that they face.

For convenience, we allow agents to form fractional friendships. This allows us to treat

U as strictly increasing, continuous, with continuous �rst- and second-order partial deriva-

15The word �friend�is used throughout, but this might also correspond to some other sort of relationship,

depending on the application.
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Figure 5: Patterns of Inbreeding Homophily by Relative Group Size and Race.

tives.16 Let Us(si; di) denote the partial derivative of U with respect to s evaluated at (si; di),

and use similarly standard notation for other partial derivatives. U is strictly concave in si
and is strictly concave in di.

We also maintain an assumption that the utility function U exhibits overall diminishing

returns to friendships. That is,

U(as; ad) < aU(s; d);

for all (s; d) and a > 1. Diminishing returns is simply a standard decreasing returns to

scale condition, here applied to preferences for friendship. Geometrically, it requires that the

marginal utility of friendships decreases along any ray going out of the origin in the space

(s; d). This property is weaker than overall concavity of U .17 This condition is equivalent to

the following condition on the total derivative

sUs(as; ad) + dUd(as; ad) < sUs(s; d) + dUd(s; d) (1)

for all (s; d) and a > 1.

Diminishing returns to friendships is satis�ed if s and d are substitutes in agents�prefer-

ences, given the strict concavity of U in both s and d. It is also satis�ed when s and d are
16The case in which agents have satiated preferences is also of interest in various applications and is treated

in the Supplementary Material to this paper.
17It implies concavity of U if U is quasiconcave and homothetic (see Friedman, 1973).
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complements, as, for instance, in Cobb-Douglas utility functions in which the sum of powers

is less than one.

Finally, to ensure the existence of optimal plans, we assume that marginal utilities vanish

as s and d go to in�nity. More precisely, for all " > 0 there exist (s0; d0) such that Us(s; d) < "

and Ud(s; d) < " for all s > s0 and d > d0.

4.2 Examples

Before moving on, let us simply mention a few examples to keep in mind that suggest

preferences on same/di¤erent types of friends.18

� Information Networks Consider a situation where individuals receive information
from their friends. In particular, the information they learn from a same-type indi-

vidual is more likely to be correlated with their own information, and that of di¤erent

types is more likely to be uncorrelated. However, a same-type individual is easier to

communicate with.

� Professional Networks Here, same-type individuals are easy to communicate with,
but o¤er less creative synergy.

� Purely Social Networks This is a situation where one shares more interests with
same-type individuals.

� Risk Sharing Networks Here, a same-type individual�s income could be more highly
correlated with own income, which o¤ers less opportunity for risk-sharing. However,

they could be closer geographically or socially, and thus easier to arrange a viable (and

self-enforcing) risk-sharing agreement with.

4.3 A Matching Process

We examine a discrete time matching process with a new in�ow of agents of mass Ni of

type i in each period. This mass embodies a continuum of agents, which is convenient

for identifying steady-states of the matching process, as we outline in detail in Appendix

A. The agents choose how many periods to stay in the matching, and form friendships in

18For a more detailed analysis of the characterization and properties of social networks see the survey

by Jackson (2006), a model of network formation that originates segregation has been recently proposed

by Watts (2006), while recent developments are available in Ioannides and Datcher Loury (2004) and Page

(2007) for the professional networks, and in Bramoullé and Kranton (2007) for the risk sharing networks.
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each period that they are in the matching. Then they exit. Given stocks of agents in the

matching, an agent will end up meeting a same-type with a probability proportional to the

stock of same-types, and a di¤erent-type with the remaining probability.

In the analysis of the matching model we only consider strategies in which agents always

accept any match. In a steady state where matching probabilities are constant in time, it

is easy to see that non satiated preferences and the assumption of a continuum of agents

directly imply that such strategies are dominant (remember that the cost of search is paid

before the realization of each random match). In this case, the main decision for an agent

is how long to stay in the matching process, which ultimately determines how many friends

they form.

For any given agent of type i who searches for a new friend, the agent meets another

agent of type i with probability qi and an agent of another type with a probability 1 � qi.
These probabilities will be endogenous in equilibrium.

If an agent of type i stays in the matching for a time ti, then he or she forms a total of

ti friends, with a proportion qiti of them being of same type, and (1� qi)ti being of di¤erent
type. Again, this presumes that agents form friends with anyone they meet in the matching

process, which is without loss of generality given the preference structure.

In Appendix A we provide a detailed derivation of a random matching process with a

continuum of agents allowing for fractions of matches, and show how taking limits as time

between matchings goes to 0 can justify exactly our formulation as the limit. In particular, we

are implicitly assuming a sort of Law of Large Numbers here, which presents some technical

challenges in matching processes with continua of agents. Recent work by Alós-Ferrer (1999)

and Du¢ e and Sun (2007) provides a foundation on which we build to provide a complete

justi�cation for the assumed matching system.

4.4 Costs

For each unit of matching the agent incurs a cost c > 0. In this model, adding discounting

only complicates the expressions without adding any insight given direct costs to matching,

and so we omit discounting.

The fact that agents accept any friend who is met implies that we can keep track of costs
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as a function of ti, so that costs are19

C(ti) = cti:

4.5 The Friendship Formation Decision Problem

Given the matching probability qi for each type i, we have a well-de�ned process for each

agent. In a steady state where qi is constant, agents solve the following problem:

max
ti
U(qiti; (1� qi)ti)� cti: (2)

The following lemma states a straightforward but useful necessary condition for an opti-

mum.

Lemma 1 An optimal choice of the time spent in the matching ti for an agent of type i given
matching probabilities qi and 1� qi satis�es the following condition:

qiUs(qiti; (1� qi)ti) + (1� qi)Ud(qiti; (1� qi)ti) = c: (3)

5 Endogenous Matching and Steady State Equilibrium

We now de�ne an overall equilibrium notion that accounts for the relation between players�

strategies and the type of matching each player faces in the system. We need to keep track

of the in-�ows of agents into the society, as well as the out-�ows of those who have �nished

searching, and the stock of agents at di¤erent stages of their search process.

Consider �ows of agents into the economy such that at each time there is a new measure

Ni of type i coming in. Take these to be continua, so that the matching has precise numbers

of matches in each period. These in�ows, together with a speci�cation of strategies leads

well-de�ned measures of agents at di¤erent phases of their matching process at any given

time, and we can de�ne corresponding steady-state qi�s.

A steady-state equilibrium of the system for a given set of Ni�s, is thus a speci�cation of

strategies for each type such that the resulting stocks of agents at each point in their search

process lead to the qi�s that justify the strategies, and such that the out�ow of agents is the

same as the in�ow.

Before presenting the de�nitions, we present an example that illustrates the ideas.

19We can instead write this as a primitive function of the number of friendships formed or C(si; di) =

cmax[si=qi; di=(1�qi)]. Given that all friendships are formed, this it follows that si = tiqi and di = ti(1�qi),
and so this is the same cost as that in the given function.
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Example 1 An Illustration of the Determination of Stocks and Flows

There are two types and at every time step 60% agents of type i (wi = 3
5
) and 40% agents

of type j enter the process (wj = 2
5
).

Suppose that type i�s agents represent qi = 2
3
of those in the matching process, so that

type j�s agents are the remaining qj = 1 � qi = 1
3
. Then type i is over-represented in the

matching process (since 2
3
> 3

5
), while the opposite is true for type j.

Suppose that the optimal strategy for type i agents, which depends on qi, is to search for

ti = 12 total friends, and then exit the process; while the optimal one for type j�s agents,

which depends on qj = 1� qi, is to stop after only tj = 9 friends are found. This means that
type i agents will participate 12 times in the matching process, while type j�s agents only

9. Deriving qi comes from qi =
12wi

12wi+9wj
= 2

3
, and then qj = 1� qi = 1

3
. Lemma 1 illustrates

how optimal stopping strategies are derived from the utility function U .

Type i agents �nd an expected number of si = qiti = 8 same-type friends and di =

(1 � qi)ti = 4 di¤erent-type friends. Similarly type j agents expect to make sj = qjtj = 3
same-type friends and dj = (1� qj)tj = 6 di¤erent-type friends.
A �rst check on the coherence of the system is to see if the cross friendships balance:

there are only two types and the expected rate at which all the friendships from i to j are

formed must equal the expected rate of those from j to i. This requires that Nidi = Njdj,

which is satis�ed in our case.

In Example 1 the optimal ti�s in response to the qi�s are given, without investigating the

structure of U that justi�es the behavior. In the following we characterize the steady-state

equilibria when the only exogenous variables are the Ni�s and the functional form of U .

5.1 Equilibrium

Given �ows of agents of di¤erent types N1; : : : ; Nn, a steady-state equilibrium is a collection

of times in the matching, stocks, and relative meeting probabilities, (ti;Mi; qi), for each type

i (along with the implied (si; di)�s and resulting utilities) such that:

(i) ti solves (2),

(ii) Mi = Niti, and

(iii) qi = Mi

M
,
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where M =
P

jMj.

(i) requires that the time that a type i agent spends in the matching process be optimal

given the matching process.

(ii) requires that the stock of agents of type i in the matching process be determined by

the strategies and the in�ows.

(iii) requires that the proportions that the agents face in the matching be given by the

relative stocks.

We do not add an explicit requirement that the in�ows match the out�ows, as this is

implied by (ii), since the �ow of agents of type i who are exiting at any given time will be

Mi=ti, and so the exiting amount will be Ni under (ii).

Note that in equilibrium qi coincides with the homophily index Hi de�ned in Section 2,

since si = tiqi and si + di = tiqi + ti(1� qi) = ti, and so Hi = si=(si + di) = tiqi=ti = qi.
The de�nition of equilibrium is well-speci�ed, and in Appendix A we show how it can be

derived via an explicit limit of discrete matching processes.

We maintain the assumption that Us(0; 0) > c and Ud(0; 0) > c, so that agents will enter

the matching process.

6 Two Types

In this section we focus on the case in which there are only two types. This provides much

of the basic intuitions and insights, making the analysis more transparent. There are some

complications when we move to more types that we explore in more detail in Section 7.

6.1 Relative Homophily and Equilibrium Conditions

We begin by showing the equilibrium conditions, in conjunction with the minor conditions

of diminishing returns to friendships, imply relative homophily.

Proposition 1 (Relative Homophily) There exists an equilibrium, and in all equilibria
both types are active. Moreover, if Ni > Nj then there exists an equilibrium where qi > 1=2,

di < dj and si > sj, and so relative homophily is satis�ed.

To see the intuition behind Proposition 1, �rst note that in equilibrium the numbers of

cross friendships formed by each population must be the same. That is, each cross-type
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friendship must involve an agent of each type and so overall it must be that Nidi = Njdj.20

Then, the conclusion that di < dj is implied by the fact that Ni > Nj. The conclusion that

si > sj requires the diminishing marginal utility condition, as if this did not hold then j types

would be forming more friendships of both types, which would lead to lower overall marginal

utility, and both types�marginal utility from staying in the process has to be exactly equal to

the cost of a matching, c, at their point of exit. Finally, note that, as discussed in Section 3,

if di < dj and si > sj, then the homophily indices are also ordered: Hi = si
si+di

> Hj =
sj

sj+dj

implying relative homophily.

The proof of Proposition 1 (in Appendix B, as all the following proofs) uses the properties

of the steady state equilibrium and does not require any structure of preferences other than

diminishing returns.

We now show that without any bias in preferences, one could not observe the other

stylized facts. That is, if preferences are not sensitive to the ratio of same type friendships

to di¤erent types, then there will be no inbreeding homophily and all types would form the

same number of friendships. This is important to note, because it tells us that a bias in

preferences will be necessary in order to match the observed data. In particular, the next

proposition states the result that when preferences do not pay any attention to types (in the

sense of note 21 below), then the mix of friendship types generated in steady state re�ects

relative population sizes. While this seems fairly obvious, it turns out not to hold with more

than two types and thus is slightly more subtle than it might appear.

Proposition 2 (Baseline Homophily) Let U be symmetric21 and let there be two types.
Then the unique steady-state equilibrium satis�es baseline homophily; moreover, all types

form the same numbers of friendships.

The fact that preferences are symmetric implies that the two groups must spend the same

amount of time in the matching, and then this implies that the relative stocks are the same

as the �ows, and so friendships are formed in ratios re�ecting the in�ows.

Baseline homophily is not particular to symmetric preferences, but can also come out of

other forms of preferences. This is illustrated in the following example.

Example 2 Log-utilities
20To see where this is implied in the equilibrium conditions (i)-(iii), note that by (ii) and (iii), it would

have to be that q1 = N1t1=(N1t1+N2t2), which implies that N2t2q1 = N1t1(1� q1). Then, since q1 = 1� q2,
this implies that N2t2(1� q2) = N1t1(1� q1) or Nidi = Njdj .
21 U is symmetric if U(s; d) = U(d; s) for all s and d.
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Let U(s; d) = � log s+� log(s+d)+ log d, where �, � and  are nonnegative. Equation

(3), implies that for any type i, the optimal number of friends is ti = si
qi
= �+�+

c
, indepen-

dently of qi.

Condition (iii) of steady-state equilibrium implies that for any type i:

qi =
NitiPK
j Njtj

=
NiPK
j Nj

= wi :

The steady state equilibrium is then easy to compute, for any type i: si = qiti = wi
�+�+

c

and di = (1� qi)ti = (1� wi)�+�+c
.

6.2 Same Type Bias, Numbers of Friends and Homophilous Be-
havior

Proposition 2 shows that although equilibrium conditions and some minimal diminishing

returns conditions imply relative homophily, the empirical evidence of inbreeding homophily

and increasing numbers of friends with group size require additional structure on preferences.

Deriving inbreeding homophily or additional numbers of friends by group size, must then

involve bias in preferences between same and di¤erent types of friends, as we can deduce

from Proposition 2.

U exhibits same-type bias if for all s > d and a > 1

U(as; ad)� U(s; d) > U(ad; as)� U(d; s): (4)

This condition requires that the marginal gains from scaling up the number of friends is

greater when the mix of friends is biased in favor of own type.

Proposition 3 (Inbreeding Homophily and Increasing Numbers of Friends) Let pref-
erences satisfy same-type bias and the in�ow of types i�s be larger than that of type j�s, so

that Ni > Nj. Then there exists an equilibrium such that the larger group forms more total

friendships per capita than the smaller group (that is, si + di > sj + dj). Morover, the equi-

librium exhibits inbreeding homophily for the larger group i and inbreeding heterophily for

the smaller group j, and relative homophily is satis�ed.

The proof is based on the fact that, under same-type bias, facing more same types in the

matching (a higher qi) implies higher marginal returns from friendships. This implies that

the larger group will spend more time in the matching process, which implies that they form

more total friendships. This biases the stock of the larger group in the matching process to
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be larger than their relative �ow. So, qi > wi for the larger group. This leads to inbreeding

homophily for the larger group and heterophily for the smaller group. This proposition thus

points out that the positive relation between group size and total number of friends, and the

tendency (in particular for majorities) to display inbreeding homophily, can be derived from

a same-type bias in friend.

Inbreeding homophily here is driven by preferences and choice, but ends up exhibiting

opportunity elements as well. More precisely, biased preferences are responsible for larger

groups staying longer in the matching, which in turns introduces a bias in the meeting process

towards larger groups, and so on. In other terms, the inbreeding homophily of larger groups

is generated by an equilibrium feedback between choice and opportunities.

We conclude this section with an example of the steady-state outcome for a simple form

of utilities that, for some parameters, satisfy same-type bias.

Example 3 Power � utilities.

U(s; d) = (s+ d)�, with � 2 (0; 1) and  > 0. (3) implies that the optimal number of
friends for a type i agent is

ti =
��
c

� 1
1��
�
(1� )q + 

� �
1��

:

If  < 1 then same-type bias is satis�ed and ti is increasing in q, if  = 1 then ti is independent

on qi as in Example 2. If  > 1 then ti is decreasing in qi.

When � = 1
2
we are able to compute the steady state equilibria. From condition (iii) of the

steady state equilibrium it follows that

qi
qj
=
witi
wjtj

:

Substituting it follows that (calling qi = q, qj = 1� q and similarly for wi and wj):

q[(1� )(1� q) + ]
(1� q)[(1� )q + ] =

w

1� w :

As long as w 2 [0; 1], the last equation has only one solution q such that q 2 [0; 1], which is:

q =
(1� 2) w

1�w � 1 +
q�

w
1�w � (1� 22)

�2
+ 42 (1� 2)

2
�

w
1�w � 1

�
(1� )

: (5)

Equation (5) is de�ned, at the limit, also for w = 0, w = 1
2
and w = 1, and the result are

respectively q = 0, q = 1
2
and q = 1, as expected. Figure 6 shows how q depends on w, when

 < 1 and  > 1.
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Figure 6: The behavior of q as a function of w when U(s; d) =
p
s+ d. On the left hand

side  = 1
5
, an on the right hand side  = 2. The green line is the identity.

6.3 Inbreeding Homophily and the Matching Process

Proposition 3 generates the observed relation between group size and total number of friends,

and exhibits inbreeding homophily for the larger group. However, it also predicts that the

smaller group necessarily should be heterophilous, which is not always consistent with the

empirical evidence discussed in Section 3, where we saw inbreeding homophily for most

groups, and moreover largest inbreeding homophily for middle-sized groups.22

To understand why, consider the measure of inbreeding homophily

IHi =
qi � wi
1� wi

=
si
ti
� wi

1� wi

Without any bias in the meetings, q1 = 1� q2 (when there are two groups). Therefore,

IH2 =
1� q1 � (1� w1)
1� (1� w1)

=
w1 � q1
w1

(6)

Thus, IH2 < 0 if and only if IH1 > 0. In order to have one group have inbreeding homophily,

the other group must be heterophilous. This is clearly contradicted by the data exhibited in

Figure 5, where there is inbreeding homophily by almost all groups.

This shows that the observed pattern of inbreeding homophily for all groups cannot be

accounted for by preferences alone. To obtain the observed patterns we must also introduce

some bias in the matching process. A simple modi�cation of our model results in equilibrium

22When there are only two types, and they are such that Ni = Nj , then our model exhibits, by symmetry,

qi = qj and baseline homophily for both groups.
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behavior that matches the observed patterns in the data. The change is in the meeting

process. Note that individuals who have homophilous preferences would tend to gain by

biasing their search so that it yields high ratios of own type compared to other types.23 This

could be done in various ways, including meeting friends through friends, as well as joining

clubs or taking part in activities that are biased towards own type.24

To get an impression of how this might work, let us examine the case of two groups, but

let us allow q1 + q2 > 1. It must still be that, for both groups, qi represents the fraction

of individuals that i meets who are of own type, and 1 � qi the fraction of di¤erent type.
Also, we still have equilibrium conditions that cross-group friendships must add up, which

is condition w1d1 = w2d2. This is equivalently written as

w1(1� q1)t1 = w2(1� q2)t2 :

However, this loosens up the analysis so that it is possible to have own-bias in the meeting

technology, relative to what the relative stocks are in the matching process.

To do this systematically, we loosen the meeting technology as in a form of directed

search, in the following manner. We require that

q�1 + q
�
2 = 1: (7)

We correspondingly rewrite our de�nition of equilibrium to be

(i) ti solves (2),

(ii) Mi = Niti, and

(iii0) q�1 + q
�
2 = 1,

(iv) M1(1� q1) =M2(1� q2) .

When we de�ned equilibrium previously, (iv) was implied by (ii) and (iii), as discussed

after Proposition 1. Under the new matching technology (7), (iii) no longer applies but is

replaced by the biased meetings, and so instead we impose (iv) directly.25

23Such biases in matching processes have appeared in the search literature under the title �directed search�,

as in Acemoglu and Shimer (1999).
24Here we are therefore considering a di¤erent bias in opportunities from the one driven by choice and

endogenous to the model, discussed after Proposition 3. The inbreeding homophily we obtain here contains

therefore elements of choice, of choice driven bias in opportunities and of �technological�bias of opportunities.
25Note that (iii0) and (iv) imply (iii) when � = 1.
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When � = 1, this is the uniformly random meeting technology that we have examined

before.26 However, when � > 1, this leads to higher qi than under uniform meeting, and

actually leads to the highest impact for the smallest groups. Note that these groups have

the most incentive to meet their own types, as they are not meeting them naturally. What

is important here is that the actual qi will be equal to f(Mi=M) for some function f which

is the same for all groups. In other words, we are introduce a change in the meeting process

which is the same for all groups.

Note that even though Figure 5 shows the greatest homophily for middle-sized groups,

that does not mean that the bias in meeting has to be greatest for them. In fact, what we

saw from the model without any meeting bias was that small groups would end up with

negative homophily measures. Thus, in order to match the observed data small groups need

to have the largest bias in meetings as the equilibrium balance conditions without any bias

would force them to have quite negative homophily measures. This is in line with the �

exponent in (7).

For instance, when w1 � w2 and t is an increasing function, then (iv) has a solution

where q1 is a continuous function of q2, with 1 > q1 > 0 for q2 = 0 and q1 = 1 for q2 = 1.

As this is a continuous function, it will intersect with the line determined by (iii0) and there

exists an equilibrium. We use this to solve the following example.

Example 4 An Example with Inbreeding Homophily for All Agents

Reconsider the utility function from Example 3:

U(s; d) = (s+ d)� = (tq + t(1� q))�

for some  > 0. Here, when c = 1, we satisfy (i) when

t(q) = (�(1� )q + �)
1

1�� :

If we then set q2 = (1 � q�1 )
1
� , it solves (iii0), we substitute that into (iv) and solve for q1,

where we substitute for the Mi�s from (ii). In a case where � = :5 and � = 2, these can be

solved explicitly; more generally we can solve these numerically and see how the equilibrium

varies with the size of the larger group w1.
26The formal derivation appearing in Appendix A, which justi�es our model as a limit of well de�ned

meeting processes, is based on a completely uniform random mixing process as in Alós-Ferrer (1999). Ex-

tending that justi�cation for the processes here requires extending the Alós-Ferrer (1999) results to a more

general set of processes where meeting probabilities are biased. This appears to work, but working that out

is a project in itself that would take us well beyond the scope of this paper. For the purposes of this section,

it is enough to verify that it works for the examples in question, which one can do directly.
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A typical �gure of the inbreeding homophily is shown in Figure 7. Here � = :5, � = 5
3
and

 = :9. The picture shows the behavior of the inbreeding homophily index IHi =
q(wi)�wi
1�wi ,

whose shape is not far from the scatter in Figure 5.

Figure 7: Inbreeding Homophily by Relative Group Size in Example 4 with � = :5, � = 5
3

and  = :9 (c = 1).

7 Many types

In this section we show that passing from two to many types is not trivial, and that some of

the above results do not carry over, with some interesting and unexpected new insights. In

particular, we show that: i) relative homophily can fail among some groups even under same-

type biased preferences, ii) baseline homophily may not be satis�ed even when preferences are

perfectly neutral with respect to types; but iii) the positive relation between total number of

friends and group size carries over, as does the positive relation between inbreeding homophily

and group size.

These results are shown in Proposition 4, which exploits a condition on preference similar

to �same-type bias�.

U satis�es strong same-type bias if

U(ax; ay)� U(x; y) � U(az; aw)� U(z; w) (8)

for any x, y, z, w and a such that x + y = z + w, z < w, w � x � z, and a � 1, where (8)
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holds with strict equality when w > x > z.27

Intuitively, the above condition requires that in the (s; d)�space, the ray along which

marginal utility of a new friend is maximal is on or above the 45 degree line. Notably, the

required condition is consistent with perfectly symmetric preferences28 (as a consequence,

an equivalent result to Proposition 2 fails).

This provides an analog to Proposition 3 for the case of more than two types.

Proposition 4 Let there be more than two types and U satisfy strong same-type bias. Then
there exists a steady-state equilibrium such that Ni > Nj implies ti > tj and qi > qj (larger

groups make more friends). The largest group displays inbreeding homophily, while the small-

est group displays inbreeding heterophily. Moreover, if Ni > Nj then IHi > IHj (larger

groups display larger inbreeding homophily).

It is useful to outline the proof. The fact that in equilibrium a higher q implies a higher

total number of friends, t(q), follows the same steps as in the proof of Proposition 3, using

strong same-type bias. The steady-state condition (iii) then implies that the term tw
q
is

constant across types. Therefore, the terms t(q) and q
w
move together across types. Inter-

estingly, in equilibrium the e¤ect of group size on total number of friends and on inbreeding

homophily balance across groups. The �xed point argument used in the proof shows that

there exist a steady-state equilibrium in which w and q are positively correlated, from which

the conclusion that larger groups display larger inbreeding homophily follows.

The result of Proposition 4 can be intuitively explained as follows. Diminishing overall

returns to friendship and strong same-type bias imply that larger groups form more friends

in equilibrium. By staying longer in the search process, members of larger groups are found

more often than members of smaller groups, which implies a larger index of inbreeding

homophily. Note that this equilibrium, feedback between opportunity and preference is at

work even when preferences are perfectly symmetric as in note 28. In this case, larger groups

move along a friendships mix which is closer to the (symmetric) desired one, and stay longer

in the matching pool.

Note that the theoretical result is not in contrast with the bell�shaped plot of the ho-

mophily index IHi versus wi in Figure 5. Proposition 4 is about a single school and does not

27If the inequality in (8) were strict also for x = w, then strong same-type bias (8) would imply same-type

bias (4). By allowing for equality when x = w we include symmetric preferences, as discussed in note 28.
28An example of symmetric preference with strong same type bias is U(s; d) = s�+ d�, it can be checked,

using (3), that t(q) reaches its maximum for q = 1
2 . All the utilities for which s and d are perfect substitutes,

as the one from Example 3, do not exhibit the strict inequality required by taste homophily.
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make comparisons across schools. The problem is however that the minority group should

always display inbreeding heterophily, while this happens only in 38 out of the 84 schools

under consideration. An approach similar to the one used in the end of previous section

could correct the model for a better matching with the data.

In Appendix C we provide conditions for which all the steady state equilibria have the

properties in Proposition 4.

8 Welfare

The model we have developed can be used to explore welfare issues. The preferences are

de�ned only on one�s own friendships, and do not depend on opinions of ideological stands

on how society should be organized. On the contrary, most of the sociological literature on

this topic has implicitly or explicitly adopted the view that an even mix or maximal diversity

is desirable per se (see, for instance, the in�uential paper by Moody (2001)).

We emphasize that our model misses many important aspects of the bene�ts of diversity,

especially in a learning environment, as mixtures only enter preferences in direct friendships.

We also emphasize that it does not directly account for the behavioral in�uences, di¤usion,

and other implications of social structure. Nonetheless, the welfare analysis here is important

because it points out that the equilibrium e¤ects are such that small changes in preference

speci�cations lead to large di¤erences in welfare conclusions. This suggests that more exact-

ing analyses are needed to fully understand optimal policies in programs that might a¤ect,

for instance, racial mixes in schools or the extent to which there is tracking and other aspects

within school that constrain the meeting process.

We examine how overall average utility varies as the racial composition of a school is

varied. Our formal analysis is restricted to the class of homogeneous preferences, for which

an explicit solution for the steady-state equilibrium is possible.

We say that U is homogeneous of degree � 2 (0; 1) if U(ks; kd) = k�U(s; d) for all (s; d).

Proposition 5 If U is homogeneous of degree � 2 (0; 1), then the steady state equilibrium
average utility of group i, U(si; di) = U(qiti; (1� qi)ti), is proportional to ti(qi), the optimal
total number of friends of type i. Thus we have argmaxq t(q) = argmaxq U(qt; (1� q) t).

Proposition 6 If U is homogeneous of degree � 2 (0; 1), then, average total welfareP
iwiUi equates

wi
qi
Ui for all i = 1:::; K. Therefore, maximizing average welfare corresponds

to maximizing wi
qi
Ui which is equal to c

�
ti � wiqi .
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Propositions 5 and 6 show that, with homogeneous preferences, aggregate welfare is

proportional to the number of friends ti formed in equilibrium divided by the term qi=wi

(the obtained ratio is constant for all types i). This result has an interesting interpretation

in terms of the empirical observations concerning numbers of friends and group size, and

concerning inbreeding homophily. Both the optimal total number of friends ti and the qi=wi
increase with the group size wi (Proposition 4).29 The change in aggregate welfare triggered

by a change in relative populations is the result of these two e¤ects. If the population of

type i has increased its weight, the increase in total friends formed by i-type agents has a

positive e¤ect, while the increase of homophily of i-type agents has the e¤ect of inhibiting

the total friendships made by the other types, with a negative e¤ect on welfare. It is notable

that the total e¤ect on welfare of changing the size of a group is captured by a reduced form

such as the term ti � wiqi , which clearly highlights the trade-o¤ between these two e¤ects on
behavior of increased size.

Consider a society with two groups, i and j, of equal size. The e¤ect of increasing the

size of group i (locally) depends on the relative magnitudes of the derivatives of ti and of
qi
wi
with respect to wi. If the increase in the number of friends outweighs the increase in

homophilous behavior, the total welfare increases. If the e¤ect on total friends eventually

mitigates and gets outweighed by the homophily e¤ect, then maximal total welfare will be

reached at some con�guration with wi 2
�
1
2
; 1
�
.

Another way of looking at the e¤ect of changing relative populations is to study the

change in the total welfare: w1U1 + w2U2. If preferences are homogeneous, this change is

proportional to w1t(q1(w1)) + (1 � w1)t(1 � q1(w1)), where q(wi) is the probability derived
in the matching process from the percentage wi. Taking the derivative with respect to w1
yields

t(q1(w1))� t(1� q1(w1)) + w1t0(q1(w1))q0 � (1� w1)t0(1� q1(w1))q0

So there is a direct e¤ect of trading agents at the lower utility for those at the higher one,

and then indirect e¤ects of changing the higher utility and the lower utility.

Turning to speci�c functional forms for the utility function allow us to illustrate this

trade-o¤ and how it relates to homophily.

The utility function studied in Example 3 can be used to illustrate how di¤erent pref-

erences can lead to opposite policy recommendations. In particular, when preferences are

homophilous ( < 1) we obtain complete segregation, while heterophilous preferences ( > 1)

29Proposition 4 is stated in terms of IHi rather than qi=wi, but the results are proven for both.
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yield an optimal solution with two equally numerous groups, the case  = 1 is the one of

perfect substitutes considered in note 28.

What drives these extreme conclusions is the fact that, although preferences are non

satiated in both s and d, still same-type and di¤erent-type friends are perfect substitutes. In

other words, these preferences lack any taste for diversity, and the fact that the marginal rate

of substitution is constant drives the corner solutions in terms of integration and segregation.

Once this taste for diversity is introduced, complete segregation may not be an optimal policy

any more, even in the presence of strongly homophilous preferences.

If instead, there is some preference for diversity, so that the marginal utility of di¤erent-

type friends grows enough when d tends to zero, the the welfare conclusions change. One

way of doing this is to assume that U satis�es Inada conditions on both s and d separately.

A separable function of the type U(s; d) = h(s)+h(d), with limx!0 h
0(x) =1 satis�es this

requirement, and allows for explicit solutions in the steady state. Consider, for instance, the

case where h(x) =
p
x.

This corresponds to U(s; d) =
p
s+ 

p
d. Here the optimal t is:

t(q) =
(1� 2)q + 2 +

p
2q(1� q)

4c2
:

It can be checked that t(q) has a maximum at q = 1
1+2

. If 0 <  < 1 then 1
2
< 1

1+2
<

1. Figure 8 shows (numerical approximation) results for total welfare for the case of two

types. Even when same-type bias is present, but not too strong (for values of  above 1
2
) an

equal split of the population gives the optimal welfare. For higher homophily (lower ) the

optimal welfare is reached with an unequal distribution, which, however, never reaches full

segregation.

In Appendix D we illustrate the problem of organizing more than two groups for the

simple case of log�utilities. Although we have seen how these preferences fail to capture

some important features of our model, they allow for explicit analytic solutions in the more

complex case of many types, and provide some insight on the main trade-o¤s in that case.

9 Concluding remarks

Our model illustrates how speci�c observations regarding homophily can be traced to di¤er-

ent aspects of matching and friendship formation. In fact, we argue that both choice and

chance are necessary to explain the observed data. In particular, a bias in preferences for

one�s own type is needed to generate di¤erences in per capita friendships, and a bias in op-

portunities or meetings is needed to generate observed inbreeding homophily patterns. Our
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Figure 8: The twp plots show the welfare of the two types i (blue) and j (green), and

aggregate welfare (red), versus wi (plotter only from 0.5 to 1, by symmetry), when U(s; d) =p
s+

p
d. The left frame is for 2 = 0:3, where the optimal aggergate welfare is for wi = 0:5.

The right hand frame is for 2 = 0:2, where the optimal welfare is for wi ' 0:88

analysis also shows the sensitivity of overall welfare to details of the setting. Generally, this

suggests that more attention should be paid to modeling the homophily and the patterns of

social ties that emerge from variations on matching processes, preferences, and equilibrium

conditions, especially given the importance of social structure in many applications. Finally,

our analysis suggests that the presence of more than two groups in the economy opens the

way to equilibrium phenomena which do not arise when there are only two sizable groups.

One of these is that inbreeding homophily may be observed even when preferences are neutral

to types, and only as a resul of equilibrium restrictions.

The model we have developed here has non satiated preferences, and that is important

in some of the conclusions above. In particular, with satiated preferences it can be that

agents only desire a limited number of di¤erent friendships, and then only accept same-type

friends after that (or vice versa). This does not alter the qualitative conclusions above,

except for one thing which is that with such preferences it is possible to generate inbreeding

homophily for all types without biasing the meeting process. Just as an extreme to illustrate

this point, consider a case where agents only derive value from own-type friends and thus

refuse all di¤erent-type friendships and so all end up with inbreeding homophily of 1. The

consideration of satiated preferences complicates the analysis and so we examine it in the

Supplementary Material.

We close by mentioning one �nal caveat for the use of the predictions of our model to
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explain aggregate cross-school data. Our theoretical model studies a single matching process

(i.e. a single school). In cases where there are just two populations, comparative statics across

the size of a group are completely tied down and can be used to make predictions across

schools. However, when there are more than two sizeable groups, then the full spectrum of

group sizes can be important in determining the outcome for any given group. Although

single school statistics are very noisy (given only one to four races in a typical school), some

patterns of the type we found in the theoretical analysis seem to be roughly consistent to

what we observe within schools. In particular, although only 35% of the schools are exactly

ordered by IHi as they are by wi, the percentage of non�majorities with a lower inbreeding

homophily index than their majorities is 79%.
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Appendix A The Matching Process

In this appendix we provide a foundation for the matching process which justi�es our de-

�nition of steady-state equilibrium with a continuum of agents. We proceed as follows.

First, we show that if agents were to stay an integer number of periods, then there exists a

discrete-time random matching process over the continuum so that the process would be in

steady-state, and the outgoing agents would have a distribution of realized meetings so that

the number of same-types (and hence di¤erent-types) that they meet would be governed by

a binomial distribution. Next, by taking a limit as the number of periods becomes large,

we have a process where the outgoing distribution will converge (in the sense of weak con-

vergence of measures, or convergence in distribution) to a Dirac measure with weight 1 on

the expected proportion of meetings with own type, pi. Finally, we take this limit of large

periods by subdividing the matches so that each period an agent makes " of a new friend,

where "! 0, and so many matches are needed to reach ti total friends.

Consider a discrete-time matching process, with a measure of new types of i entering in

each period of Ni and staying an integer Ti number of periods.

This leads to masses of Mi(Ti) = NiTi of agents of type i in the matching at any given

period and a total mass of M(T ) =
P

iMi(Ti) of agents in the matching, where T =

(T1; : : : ; Tn). Let pi(T ) =Mi(Ti)=M(T ) be the proportion of type i�s in the matching.

Agents are labeled from [0;M(T )], with a label a.

The matching-type of an agent a currently in the matching is a vector �a = (ia; ta; pa)

which indicates, the type of the agent ia, how many periods the agent has been in the
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matching ta, and the proportion of same-types that the agent has been matched with to

date pa. Given T , there is a �nite set of possible ��s, denoted by �(T ).30

A matching is a Borel measurable bijection � : M(T ) ! M(T ), with the property that

�2(a) = a 6= �(a).
A random matching scheme is a probability space with a countably additive probability

measure on the space of matchings.

Let � be a Lebesgue measure and let I�(a) be an indicator function which states whether

agent a is of type �.

Let us begin a process with a fraction of �(�) of type ��s.

Lemma 2 [Alós-Ferrer (1999), Proposition 4.4]31 There exists a matching scheme with prob-
ability measure P such that

P1. �(�(E)) = �(E) for all Borel E, P -almost surely.

P2. For all a, P (�(a) is of type �) = �(�).

P3. For all � and �0, Z
a

I�(a)I�0(�(a))d� = �(�)�(�
0):

P4. The matching is atomless, so that P (�(a) = b) = 0 for all a and b.

Lemma 2 provides a random matching which is measure-preserving (P1), atomless (which

can be seen as a minimal form of anonymity) (P4), has the distribution over matches for

each agent that is proportional to the relative fraction of matching types in the population

(P2), and such that a conclusion equivalent to that of the Law of Large Numbers holds,

so that the measure of type i who mix with type j�s is proportional to the product of the

proportions in the population (P3).

Thus, Lemma 2 allows for a matching which operates as if the Law of Large Numbers

holds for the continuum.

Now, given T , set �((i; t; p)) = Mi(T )
Ti
Bpi(T );t(p), where Bpi(T );t(p) is the probability of

having a fraction of p same types out of t draws with a probability of pi(T ) on each draw,

when the matches follow a binomial distribution. This gives the binomial distribution over

30Lemma 4.1 in Alós-Ferrer (1999), given that we start the process with a measurable mapping from

agents to matching-types, allows us to relabel agents in a measurable way, so that we can e¤ectively simply

partition the interval into subintervals collecting agents of given matching-types together.
31See also Du¢ e and Sun (2007).
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possible sequences of realized matches for those of type i who are in their t-th period of

matching, who make up a fraction of Mi(T )
Ti

of the overall set of type i�s.

Given that we start the types in proportion to what their realized frequency should be

under the binomial distribution, it then follows from Lemma 2 (especially P3) that we can

�nd a randommatching that gives back the same proportions over types as their new matches

and resulting new matching-types will have in a realization that is governed by the binomial

distribution.

Lemma 3 There exists a random-matching process satisfying (P1)-(P4), such that if � is
as described above, then we are in steady-state so that � is the out�owing distribution of

matching-types.

What we have shown is that we can �nd a discrete-time random matching process, so

that if each type stayed for an integer number of periods, then we could �nd a steady-state

equilibrium where the out�ow of agents of a given type would have a distribution of realized

fractions of matchings with same types that matches a binomial distribution.

Next, we take a limit, letting the number of periods become large for each i. We do this

as follows. Instead of making a unit of friendship in each period, consider a setting where

from each match agents get a " of friendship, where " > 0. Then let

Ti(") 2 argminT jT"� tij

be the number of periods that an agent of type i would have to stay in order to accumulate

a total amount ti of friendships, where ti is the desired number from the text. For each ",

we have a well-de�ned T ("), and a resulting steady-state matching process where in each

period there is an in�ow and out�ow of a mass of (N1; : : : ; Nn) of the various types of agents,

and where the outgoing agents of type i have a distribution over the fraction of same types

that they met which is governed by a binomial distribution on draws with Ti(") draws with

probability pi(T (")) of meeting own type on each draw. Note that as "! 0, it follows that

each Ti(")"! ti and that the above described distribution over realized meetings converges

(in the sense of weak convergence of measures) to the Dirac measure with mass 1 on pi. This

follows from standard results concerning the limit of a sequence of Binomial distributions

(e.g., see Billingsley, 1958).

Appendix B Proofs

Proof of Proposition 1: Without loss of generality, let Ni � Nj. An equilibrium must

specify qi, Mi, and a ti for each type such that (i)-(iii) are satis�ed. Let t(q) be the function
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that assigns the unique optimal t to any q 2 (0; 1), as in Lemma 1.32

As argued following the proposition, it is easy to see that steady-state conditions (ii)-(iii)

require that Njdj = Nidi or Njtj(qj)(1 � qj) = Niti(qi)(1 � qi). Given that qj = 1 � qi, it
follows that a necessary condition for an equilibrium is :

Nj
Ni
=
t(qi)(1� qi)
t(1� qi)qi

: (9)

We claim that if we �nd a qi satisfying (9), then the speci�cation of t(qi);Mi = Nit(qi); qi

together with t(1� qi);Mj = Njt(1� qi); qj = 1� qi form an equilibrium. The fact that (i)

and (ii) are satis�ed follow directly from the de�nition of t and the way in which the M�s

are de�ned. So let us check that (iii) is also satis�ed. Let us verify that qi =Mi=(Mi +Mj)

for each i so that (iii) holds. It is enough to check this for i, given that qj = 1� qi. By (9)
it follows that

Njt(1� qi)qi = Nit(qi)(1� qi);

or

(Njt(1� qi) +Nit(qi)) qi = Nit(qi):

Then

(Mj +Mi) qi =Mi;

which implies the desired conclusion.

So, to establish existence of an equilibrium we show that there exists a qi satisfying (9).

When qi = 1
2
it follows that t(qi)

t(1�qi) = 1. Thus, if Ni = Nj, then qi = 1
2
is an equilibrium.

Next, note that as qi increases, the continuous function
t(qi)(1�qi
t(1�qi)qi converges to 0 as qi ! 1.33

Thus, when Ni > Nj, there always exists a solution to (9) such that 1 > qi > 1=2.

The conclusion that di � dj with strict inequality when Ni > Nj, then follows from the

fact that Njdj = Nidi.

Now suppose, contrary to the last part of the proposition, that sj � si while Ni > Nj.
It then follows that qj > 1=2, which is a contradiction since qj = 1 � qi < 1=2. To see this
note that

qjUs(sj; dj) + pjUd(sj; dj) = c = qiUs(si; di) + piUd(si; di): (10)

Rewrite (10) as

qj(Us(sj; dj)� Ud(si; di)) = (1� qj)(Us(si; di)� Ud(sj; dj)): (11)

32The uniqueness follows from the conditions on preferences that imply that qiUs(qiti; (1 � qi)ti) + (1 �
qi)Ud(qiti; (1� qi)ti) is decreasing in ti.
33Note that t is bounded above and is bounded away from 0 under our preference conditions.
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Since sj � si and dj > di, the diminishing returns condition and strict concavity of U in

each variable implies that

Us(sj; dj) + Ud(sj; dj) < Us(si; di) + Ud(si; di);

which can be rewritten as

Us(sj; dj)� Ud(si; di) < Us(si; di)� Ud(sj; dj):

Thus, for (11) to hold, it must be that qj > 1=2.

Proof of Proposition 2: Suppose that ti > tj. Then for some a > 1:

ti = atj: (12)

Equilibrium conditions require:

(1� qi) [Us(tj(1� qi); tjqi)� Ud(atjqi; atj (1� qi))] = qi [Us(atjqi; atj (1� qi))� Ud(tj(1� qi); tjqi)] :
(13)

Symmetry implies:

Ud(atjqi; atj (1� qi)) = Us(atj (1� qi) ; atjqi): (14)

Using (14) we can rewrite (13) as follows:

(1� qi) [Us(tj(1� qi); tjqi)� Us(atj (1� qi) ; atjqi)] = qi [Ud(atj (1� qi) ; atjqi)� Ud(tj(1� qi); tjqi)]
(15)

Inequality (15) clearly violates the assumption of overall diminishing returns to friendships.

Now consider the ratio si
di
. We have Nidi = Njdj = Njdi

qi
1�qi . We obtain

Ni
Nj
= qi

1�qi =
si
di
.

For type j we have Nj
Ni
= 1�qi

qi
=

sj
dj
.

Proof of Proposition 3:
Take the equilibrium whose existence is proven in Proposition 1. This equilibrium satis�es

relative homophily and is such that qi > 1=2. Consider now condition (4) applied to (s; d) =

(qitj; (1� qi)tj); divide now (4) by a� 1 and let a! 1 to obtain:

qiUs(qitj; (1�qi)tj)+(1�qi)Ud(qitj; (1�qi)tj) > (1�qi)Us((1�qi)tj; qtj)+qiUd((1�qi)tj; qitj)
(16)

Optimality conditions require that the RHS of (16) is equal to c. We can therefore

conclude that:
@

@t
U(qitj; (1� qi)tj) > c: (17)

40



Overall diminishing returns to friendship can now be use to conclude that si + di = ti >

sj + dj = tj (note that the LHS of (17) is equal to c at the optimal choice ti for type i).

We therefore obtain

ti =
di

1� qi
>
dj
qi
= tj; (18)

from which

qi
1� qi

>
dj
di
=
Ni
Nj

=
wi
wj

: (19)

Since qi+ qj = 1 and wi+wj = 1, (19) becomes
qi
qj
> wi

wj
, from which qi > wi (inbreeding

homophily) and qj < wj (inbreeding heterophily).

Proof of Proposition 4:
Let t(q) be the explicit solution to the optimality condition. From (3) we have:

@

@t
U(qt; (1� q)t) = qUs(qt; (1� q)t) + (1� q)Ud(qt; (1� q)t) = c:

Under the properties of U (de�ned in Section 4, note that they hold also for s = 0 or

d = 0) t is a well de�ned, continuous and positive single valued function of q 2 [0; 1].
We �rst show that if U exhibits strong same�type bias, then for all qj < 1

2
and qi 2

(qj; 1� qj) (since K > 2 we have qi + qj < 1) we have that t(qj) < t(qi). Let z = t(qj)qj

w = t(qj)(1� qj), x = t(qj)qi, y = t(qj)(1� qi). We take the strict version of same type bias
from (8), dividing it by a� 1 and letting a! 1 we obtain:

qiUs(x; y) + (1� qi)Ud(x; y) > (1� qj)Us(z; w) + qjUd(z; w) = c ; (20)

which is just
@

@t
U
�
tjqi; tj(1� qi)

�
>
@

@t
U
�
tjqj; tj(1� qj)

�
= c : (21)

The assumption of overall dimishing returns to friendship of U implies now that t(qi) > t(qj).

We now prove the existence of an equilibrium, satisfying the statement of the proposition,

by showing the existence of an interior �xed point of an appropriately constructed function

F mapping the (K � 1)-dimensional simplex into itself. F is constructed as follows.
We denote by F1 the function that associates with each element ~q = (q1; q2; :::; qK) of the

simplex the vector F 1(q) = (t(q1); t(q2); :::; t(qK)).

We then denote by F 2 the continuous function that orders any K-vector in increasing order.

We �nally denote by F 3 the continuous function de�ned as

F 3(x1; x2; :::; xK) =

�
N1x1P
Nixi

;
N2x2P
Nixi

; :::;
NKxKP
Nixi

�
; (22)
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where the vector (N1; N2; :::; NK) is ordered in increasing order.

Note that for any ~q = (q1; q2; :::; qK), F (~q) � F 3 � F 2 � F 1(~q) is ordered in increasing order
and the sum of its elements is 1.

The mapping F is a continuous function from the simplex to itself, and possesses therefore

a �xed point by Brower�s Theorem.

Note that, on the �xed point, F 2 preserves the ordering of the vector ~q because t(q) is

increasing, so that F 2 applied to the �xed point is just the identity function.

We conclude the proof by showing that such a �xed point is interior. Suppose not, so that

there is at least one qi such that qi = 0. By the assumption that Us(0; 0) > c and Ud(0; 0) > c,

F 3 � F 2 � F 1 has all positive values (because F 1 has all positive values), which implies that
qi = 0 cannot be an element of the �xed point.

We �nally show that, given the steady state condition tiwi
qi
=

tjwj
qj
, the vector ( q1

w1
; q2
w2
; :::; qK

wK
)

is ordered in increasing order (given that the vector (t1; t2; :::; tK) is also increasing). Given

that
P
qi = 1 and

P
wi = 1, we conclude that

qK
wK

> 1 while q1
w1
< 1. It is now straightfor-

ward to show that this implies, from Ni > Nj, that
qi�wi
1�wi >

qi�wi
1�wj .

Proof of proposition 5: Homogeneity of degree �, together with the condition for the
optimal stopping:

c =
@

@t
U(qt; (1� q)t)

implies that:

t(q) = �
U(qt; (1� q)t)

c
;

which implies for each type i that:

Ui(qit(qi); (1� qi)t(qi)) =
ct(qi)

�
; (23)

so that the optimal number of friends given qi is proportional to the maximized level of

utility up to the constant �
c
.

Proof of proposition 6: Equation (iii�) for steady state equilibrium and si = qiti imply
that

M =
Niti
qi

for each i.

This implies that
Niti
qi

=
Njtj
qj
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for every i and j.

Therefore, in equilibrium
wiUi
qi

=
wjUj
qj

:

Maximizing the aggregate (or average) utility in society, then amounts to maximizing

X
i

wiUi = w1U1

 
1 +

X
j�2

qj
q1

!
=
w1
q1
U1 =

cw1
�q1

t1;

which establishes the claim.

Appendix C Ruling out non well-ordered equilibria

In this section we establish conditions under which the result of Proposition 4 apply to all

steady state equilibria. Recall that U is homogeneous of degree � 2 (0; 1) if U(ks; kd) =
k�U(s; d) for all (s; d).

Proposition 7 Let U(s; d) be homogeneous of degree � 2
�
0; 1

2

�
. In every steady state

equilibrium, Ni > Nj implies qi > qj. If preferences also exhibit same type bias, then

ti = si+ di > tj = sj + dj whenever Ni > Nj, and i exhibits more inbreeding homophily than

j (IHi > IHj).34

Proof of Proposition 7: From condition (iii) of equilibrium we have that if Ni > Nj,

then ti
qi
<

tj
qj
.

If
@ t
q

@q
< 0 we have that qi > qj.

@ t
q

@q
=

@t
@q
q�t
q2

< 0 if and only if @t
@q
� q
t
< 1.

Remember (3):
@

@t
U(qt; (1� q)t) = c : (24)

34The next example shows that, even with two types, if U is homogeneous of degree � > 1
2 , we can have

equilibria with Ni > Nj but qi < qj and ti < tj . Consider U(s; d) = s0:9 + 1
2d
0:9, 2N1 = N2 and c = 0:9.

Given homogeneity it is possible to express explicitly

t(q) =
�
q0:9 + (1� q)0:9

�10
:

We �nd numerically two steady state equilibria: 1) a non well-ordered equilibrium in which q1 ' 0:62,

q2 ' 0:38, t1 ' 0:23 and t2 ' 0:07; 2) a well-ordered equilibrium in which q1 ' 0:001, q2 ' 0:999, t1 ' 0:0001
and t2 ' 1:00.

43



considering that U is homogeneous of degree � we get:

t(q) = �
U(qt; (1� q)t)

c
: (25)

We can take the derivative of (25) with respect to q, obtaining:

@t

@q
= �

t
�
Us(qt; (1� q)t)� Ud(qt; (1� q)t)

�
+ @t

@q

�
@
@t
U(qt(1� q)t)

�
c

; (26)

from which, using (24):

@t

@q
=

�

1� �
t
�
Us(qt; (1� q)t)� Ud(qt; (1� q)t)

�
c

: (27)

From (27) we have:

@t

@q
� q
t
=

�

1� �
q
�
Us(qt; (1� q)t)� Ud(qt; (1� q)t)

�
c

<
�

1� �
qUs(qt; (1� q)t) + (1� q)Ud(qt; (1� q)t)

c

=
�

1� � � 1 ;

where the �rst inequality comes from the fact that Ud > 0, while the second comes from the

fact that � � 1
2
.

The last part of the proof follows from Proposition 4.

Appendix D Welfare analysis with many types and log-

arithmic preferences

We use the logarithmic preferences introduced in Example 2 to investigate alternative policies

when there are more than two groups. Note that in this case U(s; d) is not homogeneous

any more.35

The functional form U(s; d) = � log s+ � log(s+ d) +  log d exhibits baseline homophily

(qi = wi for any type i), since the optimal number of friends is always
�+�+

c
, independently

on q.

35The log function can be considered a case of homogeneity �, at the limit � ! 0. It is however easy to

check that not all our results concerning homogeneous functions hold in the logarithmic case.
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Consider the case in which � = 1, � > 0 and  = 0. The utility of type i agents is then:

Ui(wi) = log

�
wi
1 + �

c

�
+ � log

�
1 + �

c

�
� 1� � ;

The utility of type i agents is indi¤erent to a split of type j in more types, as long as wi is

kept constant. There is no externality on other types if a type splits in more sub�groups.

The type i utility is always increasing in wi. If the number of types is K = 2, then the

expected average welfare wiU(wi) + (1� wi)U(1� wi) is:

wi log

�
wi
1 + �

c

�
+ � log

�
1 + �

c

�
+ (1� wi) log

�
(1� wi)

1 + �

c

�
� 1� �:

which is convex, achieves always a minimum at wi = 1
2
and a maximum in the completely

segregated case where wi = 0 or wi = 1.

Consider now the case in which � = 1, � = 0 and  > 0. The utility of type i agents

depends on wi and is:

Ui(wi) = log

�
wi
1 + 

c

�
+  log

�
(1� wi)

1 + 

c

�
� 1�  :

There is still no externality if another type is split in more types. It is easy to check that

Ui(wi) is increasing in wi up to the point where wi = 1
1+
, and then is decreasing. If  is a

positive integer, then the social optimum would be to split equally  + 1 types (if available)

in the matching process.

If we consider only K = 2 types, then the expected average welfare is�
wi + (1� wi)

�
log

�
wi
1 + 

c

�
+
�
wi + (1� wi)

�
log

�
(1� wi)

1 + 

c

�
� 1�  :

The previous function has always a critical point in wi = 1
2
. Its second derivative with

respect to wi is
�+(1+)wi(1�wi)

w2i (1�wi)2
, which is negative for any wi 2 (0; 1) only if  > 1

3
. If  � 1

3

then the average welfare obtains its maximum for wi = 1
2
.

If instead  < 1
3
, then wi = 1

2
is a local minimum for the aggregate welfare, whose functional

form is symmetric and bimodal, as in Figure 8.

Figure 9 shows the two cases.
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Figure 9: Average aggregate welfare when U(s; d) = log s +  log d. Left hand side is for

 = 1
2
, right hand side is for  = 1

5
.
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